
Security Assessment

UnshETH #2
CertiK Verified on Apr 4th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Resolved
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

4 Informational 3 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY UNSHETH #2

CertiK Verified on Apr 4th, 2023

UnshETH #2

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 04/04/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/UnshETH/unsheth-contracts-

v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939

https://github.com/UnshETH/unsheth-bridge-

...View All

COMMITS
92efb3b84ccf78052d5f9af3822c5af0de892939

e74db6733f4363dabdbffd21acc06121088d2038

...View All

7
Total Findings

5
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

0
Unresolved

https://github.com/UnshETH/unsheth-contracts-v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939
https://github.com/UnshETH/unsheth-bridge-contracts/tree/e74db6733f4363dabdbffd21acc06121088d2038
https://github.com/UnshETH/unsheth-contracts-v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939
https://github.com/UnshETH/unsheth-bridge-contracts/tree/e74db6733f4363dabdbffd21acc06121088d2038

TABLE OF CONTENTS UNSHETH #2

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Decentralization Efforts

Description

Recommendations
Short Term:

Long Term:

Permanent:

Findings

RUT-01 : Lack Of `payable` Keyword

LSV-01 : Potential Overwrite `lsdIndex[_lsd]`

UET-01 : Missing Zero Address Validation

LSV-02 : `shanghaiTime` may not be modified

LSV-03 : The Purpose Of the Function `setVdAmm`

UET-02 : Missing Emit Events

UET-03 : Usage of `transfer()`/`send()` for sending Ether

Appendix

Disclaimer

TABLE OF CONTENTS UNSHETH #2

CODEBASE UNSHETH #2

Repository

https://github.com/UnshETH/unsheth-contracts-v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939

https://github.com/UnshETH/unsheth-bridge-contracts/tree/e74db6733f4363dabdbffd21acc06121088d2038

Commit

92efb3b84ccf78052d5f9af3822c5af0de892939

e74db6733f4363dabdbffd21acc06121088d2038

CODEBASE UNSHETH #2

https://github.com/UnshETH/unsheth-contracts-v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939
https://github.com/UnshETH/unsheth-bridge-contracts/tree/e74db6733f4363dabdbffd21acc06121088d2038
https://github.com/UnshETH/unsheth-contracts-v1.5/tree/92efb3b84ccf78052d5f9af3822c5af0de892939
https://github.com/UnshETH/unsheth-bridge-contracts/tree/e74db6733f4363dabdbffd21acc06121088d2038

AUDIT SCOPE UNSHETH #2

7 files audited 3 files with Acknowledged findings 4 files without findings

ID File SHA256 Checksum

LSV src/LSDVault.sol
b88e9d647c11fbcd689b2a6f332aad15ce495

1524e35c7f04eb4aa16b175d4a9

RUT src/sgReciever.sol
97894cadea3e16773b64ff97d6dc909df16dda

0d4a292aca362b49bdf314bc12

SUT src/sgSender.sol
a3a7bd57ccb7b610b23c4b8f34f48e940e732

1dad781ca9f25c9a195dc52bf66

USO src/USH-OFT-BSC.sol
0d54a8d2bb5d6dc2fa359cac49cd1d2c230ff0

a23f3abce2827332c4069b796d

USE src/USH-Proxy-ETH.sol
1761f3f4fd39c8eb86400054a41436f2a8f89ac

f0f88b9b32cbd9bdd27211e81

ETO src/unshETH-OFT-BSC.sol
61be281c59b88f9dfd981453d1fdb3d1aa6f8a

776981a10cc4fdb654fc751408

ETE src/unshETH-Proxy-ETH.sol
dee81e79cca5e33cd0be005b319cb6eb3c749

fe3fe4f3a0a05d287e629e568f7

AUDIT SCOPE UNSHETH #2

APPROACH & METHODS UNSHETH #2

This report has been prepared for UnshETH to discover issues and vulnerabilities in the source code of the UnshETH #2

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS UNSHETH #2

REVIEW NOTES UNSHETH #2

Financial Models

Financial models of blockchain protocols need to be resilient to attacks. They need to pass simulations and verifications to

guarantee the security of the overall protocol.

The protocol offers users the ability to deposit tokens into a vault using various blockchain networks.

1. User can use usdt/weth/bnb to deposit to a vault. The vault can be deployed in the same chain or a different chain.

2. Whenever a user makes a deposit, the system calculates the current ETH value of each UnShETH token. It then

uses this value to determine the total amount of UnShETH tokens to be issued to the user based on the formula: the

total ETH value of tokens deposited divided by the latest ETH value of each UnShETH token.

3. Then the project minted the UnshETH token and send them to the user.

4. The project also provides a way to exit. Users can exit the protocol and get All kinds of tokens proportionally. A part of

the tokens will be deducted from the fees.

Third-Party Dependencies

The contract serves as the underlying entity to interact with third-party protocols like LayerZero , StarGate , etc. The scope

of the audit treats 3rd party entities as black boxes and assumes their functional correctness. However, in the real world, 3rd

parties can be compromised and this may lead to lost or stolen assets. In addition, upgrades of 3rd parties can possibly

create severe impacts, such as increasing fees of 3rd parties, migrating to new LP pools, etc.

We understand that business logic requires interaction with LayerZero , StarGate , etc. We encourage the team to

constantly monitor the statuses of 3rd parties to mitigate the side effects when unexpected activities are observed.

REVIEW NOTES UNSHETH #2

DECENTRALIZATION EFFORTS UNSHETH #2

Description

In the contract USDTSGReciever the role _owner has authority over the functions:

setSrcChainIdAndAddress : change the srcChainId and srcAddress which is very important in the retry logic.

set_unsheth_gas_cost : set the amount of gas used during the sending token process.

rescue_eth : take out all the ETH. Any compromise to the _owner account may allow the hacker to take

advantage of this authority.

In the contract BNBUnshethMinter the role _owner has authority over the functions:

setPoolParams : change the basic configuration of the contract.

setPaused : pause/unpause the contract main functions.

setStargateGasAmount : set the amount of the gas used during the swap process.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

In the contract LSDVault the role _owner has authority over the functions:

setUnshethAddress : change the address of the UnShETH token.

setAdmin : set the address of the admin .

addLSD : add basic information of an LSD token that can be deposited in this contract.

setLSDConfigs : set the math parameters of the LSD tokens added in the contract.

enableLSD : activate the LSD token.

enableAllLSDs : activate all the LSD tokens.

disableLSD : disable the LSD token.

toggleWeightCaps : toggle the weight caps to make the contract check/uncheck the amount whether more than

weighted caps.

toggleAbsoluteCaps : toggle the absolute caps to make the contract check/uncheck the amount whether more than

absolute caps.

toggleV1VaultAssetsForCaps : control the balanceUnderlying whether count the V1 Vault Assets or not.

unpauseDeposits : unpause the function deposit .

setRedeemFee : set the fees when exiting the protocol.

createTimelockProposal : propose a proposal needed votes.

cancelTimelockProposal : cancel the proposal.

updateShanghaiTime : update the shanghaiTime which is a key variable controls most function running.

pauseWithdrawals/unpauseWithdrawals : pause/unpause the function exit .

disableVdAmm : set the swapperAddress to 0.

DECENTRALIZATION EFFORTS UNSHETH #2

withdrawAllETH : withdraw all the ETH in the contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

In the contract LSDVault the role admin has authority over the functions:

updateShanghaiTime : update the shanghaiTime which is a key variable controls most function running.

pauseWithdrawals/unpauseWithdrawals : pause/unpause the function exit .

disableVdAmm : set the swapperAddress to 0.

withdrawAllETH : withdraw all the ETH in the contract.

Any compromise to the _owner account may allow the hacker to take advantage of this authority.

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We recommend carefully managing

the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of short-

term, long-term, and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

being compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

DECENTRALIZATION EFFORTS UNSHETH #2

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

DECENTRALIZATION EFFORTS UNSHETH #2

FINDINGS UNSHETH #2

This report has been prepared to discover issues and vulnerabilities for UnshETH #2. Through this audit, we have uncovered

7 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

RUT-01 Lack Of payable Keyword Logical Issue Major Resolved

LSV-01 Potential Overwrite lsdIndex[_lsd] Logical Issue Medium Resolved

UET-01 Missing Zero Address Validation
Volatile

Code
Minor Acknowledged

LSV-02 shanghaiTime May Not Be Modified Logical Issue Informational Resolved

LSV-03 The Purpose Of The Function setVdAmm Logical Issue Informational Resolved

UET-02 Missing Emit Events Coding Style Informational Acknowledged

UET-03
Usage Of transfer() / send() For Sending

Ether

Volatile

Code
Informational Resolved

FINDINGS UNSHETH #2

7
Total Findings

0
Critical

1
Major

1
Medium

1
Minor

4
Informational

RUT-01 LACK OF payable KEYWORD

Category Severity Location Status

Logical

Issue
Major

src/sgReciever.sol (e74db6733f4363dabdbffd21acc06121088d2038): 9

7, 138
Resolved

Description

The payable keyword is missing from the sgReceive() function, making it impossible to receive ETH and pay the gas fee

to execute the function IOFTCore(proxyUnshethAddress).sendFrom to send the unshETH back to _toAddr on BSC.

 IOFTCore(proxyUnshethAddress).sendFrom{value:unsheth_gas_cost}(//TODO really

think about this

 address(this), //current owner of the unsheth

 _chainId, //chain Id where the proxy of the unsheth exists (we recieve

this in sgRecieve)

 abi.encode(toAddr), //the address we want the unsheth to end up in

 unshethMinted, //the amount of unsheth to send

 payable(address(this)), //the refund address if something goes wrong or

excess

 address(0x0), //the ZRO Payment Address

 abi.encode("") //Adapter Params //TODO check on this

);

Recommendation

We recommend adding the payable keyword on the function.

Alleviation

[CertiK] : The team heeded the advice and added the function receive to receive the ETH to resolved the finding in the

commit ddf21ec6e8a664ce4066992585f0e484bb976df4.

RUT-01 UNSHETH #2

https://github.com/UnshETH/unsheth-contracts-v1.5/tree/ddf21ec6e8a664ce4066992585f0e484bb976df4

LSV-01 POTENTIAL OVERWRITE lsdIndex[_lsd]

Category Severity Location Status

Logical

Issue
Medium

src/LSDVault.sol (92efb3b84ccf78052d5f9af3822c5af0de892939): 307

~309, 456~457, 496~497
Resolved

Description

After adding the first _lsd , the lsdIndex[_lsd] variable retains its initial value of 0 since the length of the

supportedLSDs array is 1. Consequently, if the same _lsd is added again, the require statement in the addLSD

function will evaluate to true, causing the lsdIndex[_lsd] variable can be overwritten.

194 function addLSD(address _lsd) public onlyOwner onlyWhenPaused {

195 require(lsdIndex[_lsd] == 0, "Lsd has already been added"); //fyi fails

on the first lsd being duplicated since it has actual index 0

196 supportedLSDs.push(_lsd);

197 lsdIndex[_lsd] = supportedLSDs.length-1; //reverse mapping of

supportedLSDs indices

198 isEnabled[_lsd] = false;

199 lsdConfigs[_lsd] = LSDConfig(0, 0, 0);

200 emit LSDAdded(_lsd);

201 }

448 function exit(uint256 amount) external nonReentrant {

449 require(migrated = false, "Already migrated, use v2 vault to exit");

450 require(block.timestamp > shanghaiTime, "Cannot exit until

shanghaiTime");

451 require(!withdrawalsPaused || block.timestamp > withdrawalUnpauseTime,

"Withdrawals are paused");

452 require(IERC20(unshETHAddress).balanceOf(msg.sender) >= amount,

"Insufficient unshETH");

453 uint256 shareOfUnsheth =

1e18*amount/IERC20(unshETHAddress).totalSupply();

454 uint256 fee = shareOfUnsheth*redeemFee/10000; //redeem fees are 100%

retained by remaining unshETH holders

455 IunshETH(unshETHAddress).minter_burn_from(msg.sender, amount);

456 for (uint256 i = 0; i < supportedLSDs.length; i = unchkIncr(i)) {

457 uint256 lsdBalance =

IERC20(supportedLSDs[i]).balanceOf(address(this));

458 uint256 amountPerLsd = (shareOfUnsheth-fee)*lsdBalance/1e18;

459 IERC20(supportedLSDs[i]).safeTransfer(msg.sender, amountPerLsd);

460 }

461 }

LSV-01 UNSHETH #2

Recommendation

We recommend reviewing the logic and fixing the issue.

Alleviation

[UnshETH] : We're managing that through our pre-configuration checks - in any case the first index is set in the constructor

which we did do correctly during deployment and cannot be overwritten, so the protocol logic is working as intended now.

LSV-01 UNSHETH #2

UET-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

src/sgReciever.sol (e74db6733f4363dabdbffd21acc06121088d2038):

47~51, 66; src/sgSender.sol (e74db6733f4363dabdbffd21acc061210

88d2038): 55~61, 84; src/LSDVault.sol (92efb3b84ccf78052d5f9af38

22c5af0de892939): 122~123, 175, 180

Acknowledged

Description

The cited address input is missing a check that it is not address(0) .

Recommendation

We recommend adding a check the passed-in address is not address(0) to prevent unexpected errors.

Alleviation

[UnshETH] : These issues are handled in our deploy scripts.

UET-01 UNSHETH #2

LSV-02 shanghaiTime MAY NOT BE MODIFIED

Category Severity Location Status

Logical

Issue
Informational

src/LSDVault.sol (92efb3b84ccf78052d5f9af3822c5af0de89293

9): 531~532
Resolved

Description

As per the validation of _newTime below, the variable shanghaiTime can be updated when block.timestamp <

_newTime < shanghaiTime + 4 weeks.

530 function updateShanghaiTime(uint256 _newTime) external onlyOwnerOrAdmin {

531 require(_newTime < shanghaiTime + 4 weeks, "Cannot extend more than 4

weeks");

532 require(_newTime > block.timestamp, "Cannot set shanghaiTime in the

past");

533 shanghaiTime = _newTime;

534 emit ShanghaiTimeUpdated(shanghaiTime);

535 }

However, if the block.timestamp >= shanghaiTime + 4weeks, there is no way to set the _newTime as the

shanghaiTime no matter what the _newTime is.

Recommendation

We recommend reviewing the logic again and ensuring it is as intended.

Alleviation

[UnshETH] : This is intentional logic. We don't want the time owner or admin the ability to extend the shanghaitime

indefinitely, which would indefinitely postpone when users can withdraw their funds.

LSV-02 UNSHETH #2

LSV-03 THE PURPOSE OF THE FUNCTION setVdAmm

Category Severity Location Status

Logical

Issue
Informational

src/LSDVault.sol (92efb3b84ccf78052d5f9af3822c5af0de89293

9): 508~519
Resolved

Description

There is a function setVdAmm which only changes the swapperAddress and ammEnabled . However, we can not find any

usage of the swapperAddress and ammEnabled . We would like the team to elaborate more about the usages of the

swapperAddress and ammEnabled .

Recommendation

We would like the team to elaborate more about the usages of the swapperAddress and ammEnabled .

Alleviation

[UnshETH] : We intend for this to enable giving token approvals to an "AMM" contract which will be used to facilitate swaps

between the assets in the LSDVault. The activation of the AMM is locked under timelock + onlyOwner (multisig). We put the

function in there to facilitate enabling this functionality when the AMM logic is ready to launch without requiring a full migration

of user funds.

LSV-03 UNSHETH #2

UET-02 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

src/sgReciever.sol (e74db6733f4363dabdbffd21acc06121088

d2038): 64, 70, 81; src/sgSender.sol (e74db6733f4363dabdbff

d21acc06121088d2038): 76~81, 89, 94; src/LSDVault.sol (92e

fb3b84ccf78052d5f9af3822c5af0de892939): 564

Acknowledged

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[UnshETH] : Issue acknowledged. We won't make any changes for the current version.

UET-02 UNSHETH #2

UET-03 USAGE OF transfer() / send() FOR SENDING ETHER

Category Severity Location Status

Volatile

Code
Informational

src/sgReciever.sol (e74db6733f4363dabdbffd21acc06121088d203

8): 83; src/LSDVault.sol (92efb3b84ccf78052d5f9af3822c5af0de89

2939): 567

Resolved

Description

Using Solidity's transfer() and send() functions for transferring Ether is not recommended, since some contracts may

not be able to receive the funds. These functions forward only a fixed amount of gas (2300 specifically) and the receiving

contracts may run out of gas before finishing the transfer. Additionally, gas costs may increase in the future. Thus, some

contracts that can receive now may stop working in the future due to the gas limitation.

Recommendation

We recommend using the Address.sendValue() function from OpenZeppelin.

Since Address.sendValue() may allow reentrancy, we also recommend guarding against reentrancy attacks by utilizing

the Checks-Effects-Interactions Pattern or applying OpenZeppelin ReentrancyGuard.

Alleviation

[CertiK] : The team heeded the advice and resolved the finding in the commit

ddf21ec6e8a664ce4066992585f0e484bb976df4.

UET-03 UNSHETH #2

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/utils/Address.sol#L60
https://docs.soliditylang.org/en/v0.8.15/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/release-v4.7/contracts/security/ReentrancyGuard.sol
https://github.com/UnshETH/unsheth-contracts-v1.5/tree/ddf21ec6e8a664ce4066992585f0e484bb976df4

APPENDIX UNSHETH #2

Finding Categories

Categories Description

Logical

Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile

Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding

Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX UNSHETH #2

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER UNSHETH #2

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER UNSHETH #2

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

UnshETH #2 Security Assessment CertiK Verified on Apr 4th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

